
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 6 June 2024

213

Math-101 for Neural Networks
[1] Mohd Nomaan, [2] Dr. Philemon Daniel

[1] [2] ECE Department NIT Hamirpur, India

Corresponding Author Email: [1] 194577@nith.ac.in, [2] phildani7@nith.ac.in

Abstract— With the role of AI becoming more and more decisive in technological progress and human civilization's trajectory, we

must look into this very critical limitation of Neural Networks – their inability to reason and comprehend mathematics. In this research,

we investigate the mathematical capabilities of neural networks, focusing on symbolic integration—a pivotal mathematical task with

diverse practical applications. We approach integration as neural translation task, using transformers. A novel digit encoding method

has also been introduced, which significantly improves the performance of our basic integrator model. The study includes discussions on

dataset generation, preprocessing procedures for handling symbolic mathematics data, detailed model architecture, and a comparative

analysis of achieved results with mathematical software solutions.

I. INTRODUCTION

AI can be seen as the driving force behind the

ever-changing technologies and evolution of human

civilization. Neural networks are constantly improving at

tasks like recognizing faces and predicting trends. Large

Language Models (LLMs), such as ChatGPT, are great at

generating and understanding natural language. However,

despite their skill in crafting sonnets, identifying faces, and

creating art, these advanced models face challenges with

basic arithmetic, like multiplication. This limitation of neural

networks becomes evident as we move into the age of AI.

Addressing this shortfall is crucial if we aim to achieve

Artificial General Intelligence (AGI). To enable these

systems to think like humans and handle a variety of tasks,

including mathematics, we must find ways to improve their

abilities in this area.

Several studies have explored how well neural networks

can handle mathematics. Google's Minerva project [8]

trained an LLM to solve basic high-school math problems.

David et al. in [2] created a dataset of math problems and

evaluated the performance of LSTM and Transformer models

in solving them. The Deep Neural Solver [8] by tencent was

an RNN-based model to automatically solve math word

problems by translating them into mathematical equations.

Francois Charton conducted extensive research on neural

networks' ability in tackling calculus [3], linear algebra [4],

and recurrent sequences [7].

In this paper, we explore into how effectively neural

networks can perform symbolic integration—a fundamental

mathematical task with many practical applications.

Symbolic integration presents itself as an ideal domain for

investigating the mathematical capabilities of neural

networks. We propose treating symbolic integration as a

natural language translation task, wherein a model learns to

translate input functions into their respective anti-derivatives.

Our approach begins with an explanation of how we

generated a dataset for this task, outlining input and output

sequences. We then provide a detailed description of the

model architecture used. Finally, we evaluate the model's

performance and compare it with existing mathematical

software to weigh its effectiveness. Through this exploration,

we aim to illuminate the potential of neural networks in

handling complex mathematical tasks and pave the way for

further advancements in AI-driven mathematical

problem-solving.

II. DATASET GENERATION

To prepare a seq-to-seq model for an integration task, we

need to convert mathematical functions into a format that an

NLP model can understand. The input sequences to the

model consist of symbolic functions, while the output

sequences contain their corresponding antiderivatives.

Creating a dataset of function-integral pairs by manually

integrating each function would be time-consuming.

Therefore, we use the inverse method of differentiation to

generate these pairs. As described in [3], we convert these

symbolic expressions into prefix form, simplifying parsing

and ensuring uniform expression representation.

For representing the symbolic expressions, we employ

functional trees, where each node represents an operator or an

operand, as shown in fig. 1. To generate an expression, we

start from the topmost node of the tree and iteratively select

operators/operands for nodes until the tree reaches its

maximum depth or all branches terminate with an operand.

Fig. 1. Functional Tree for f(x) = x + sin(3x)

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 6 June 2024

214

The algorithm used to generate symbolic expressions is

described here:

Algorithm 1 Algorithm for function generation

Input: Maximum number of internal nodes

(max_nodes)

Output: A random function tree

 Initialize a function tree

 Generate a node recursively:

 Decrement max_nodes by 1

 if (max_nodes <= 0) then

 Create a leaf node with a random operand

 return node

 Choose a random operator for the node

 if (operator is binary) then

 Generate two child nodes recursively

 return node

 else

 Generate a child node recursively

 return node

 Set the returned node as root node

 end

where,

 Operators can be any unary or binary mathematical

operator like +, -, *, /, ^, sine, cosine, tangent, etc. For

this paper, considering the computing constraints, the

operators are chosen from the set –

{+, -, *, ^}

 Operands can be any variable x, y, z, etc. or any real

number. For this paper, we consider only univariate

functions in x and constants (coefficients or operands)

are in the range [-3000,3000]

The functions generated using this algorithm are then

converted into prefix notation using Sympy [6] and stored as

function-integral pairs. For this study, we collected a dataset

of 20,000 function-integral pairs, which are saved in text files

labeled p_expr.txt and p_intg.txt respectively. The prefix 'p'

indicates that the equations are in polish notation. This

method simplifies expression format and ensures consistency

in representation.

III. MODEL ARCHITECTURE

We selected the task of mathematical reasoning -

Integration of univariate functions, to assess the capability of

neural networks. We tackle this challenge as a neural

translation task, wherein a sequence-to-sequence model

learns to translate input functions into their corresponding

integrals. Fig. 2 provides a simple illustration of this process.

The sequence-to-sequence model utilized in this study is

based on the Transformer architecture, as described in [1].

Before feeding the equations into the transformer for neural

translation, preprocessing is necessary. Initially, the

equations are segmented into individual tokens, and special

tokens like [SOS], [EOS], [UNK] are added to them.

Additionally, each tokenized equation is standardized to a

fixed size (seq_len) by adding [PAD] tokens. This results in

source and target equations in tokenized form. Subsequently,

these equations are encoded from text to numeric

representation using a vocabulary derived from the tokens.

Each token is encoded into a vector with dimensions (1,

vocab_size), thereby transforming each equation into the

format (seq_len, vocab_size).

Fig. 2. Symbolic integration using a seq. to seq. model.

Then, we proceed to generate input embeddings from these

equations. This process involves converting each token into a

multi-dimensional vector with d_model dimensions. These

transformed inputs are now prepared to be fed into the

transformer model to generate integrals for the input

equations. As the equations traverse through the layers of the

transformer, they are translated into their corresponding

integrals. However, they remain in the vector format (seq_len,

d_model). To obtain the final output integrals, a projection

layer is used to convert the d_model dimensional vectors into

the corresponding tokens. These output integrals are

subsequently compared token by token with the actual

integrals (referred as labels), and loss is computed using a

loss function. This loss is then backpropagated through the

layers of the transformer, and finally weights and biases get

updated according to that.

Fig. 3. A basic attention based integrator

This formed the foundational architecture for translating

equations into their respective integrals. While this model

effectively handled basic functions, we needed to enhance its

capabilities to integrate more complex functions with greater

precision. Therefore, we implemented several modifications

to fine tune the model according to our needs. One significant

limitation of the initial version was its treatment of numbers

in a manner identical to mathematical symbols. Consequently,

a significant portion of the vocabulary was dedicated to

numbers, with each possible number considered as a separate

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 6 June 2024

215

token. To address this issue and retain the numeric essence of

coefficients and constants in equations, we devised a solution.

We encoded digits as special digit tokens and incorporated

the values of these tokens into the input embeddings through

concatenation. This refinement enables us to accurately

process the numeric information conveyed by the coefficients

and constants, a consideration overlooked in the previous

model.

Fig. 4. Digit encoding of input expressions

However, this alternative encoding scheme poses a

challenge when it comes to decoding it back into equation

form. The output from the transformer is in the format

(seq_len, d_model). Therefore, we must decode it into tokens

and decode digit tokens into valid numeric values. To address

this, we implemented two parallel decoding mechanisms

within the projection layer. In the first part, a dense linear

layer projects the transformer output (seq_len, d_model) into

tokens (seq_len,). Simultaneously, in the second part, a

sequential regression layer is employed to project the values

of digit tokens. This is achieved through a series of dense

layers, allowing us to accurately decode digit tokens into

their corresponding numeric values.

Fig. 5. Projection layer to decode transformer output

The next challenge was to compute the loss based on this

output. To tackle this, we devised a custom loss function

designed to handle token class mismatches and slight shifts in

the numeric values of coefficients differently. In our earlier

setup, where all numbers were treated as distinct tokens, even

a minor error in the numeric value of a predicted coefficient

was treated same as predicting a different variable or operator.

In this new function, we employed cross-entropy loss to

quantify the error in token prediction and mean square error

to quantify the error in the value of digit tokens. The total loss

is computed as the weighted sum of these two errors,

ensuring a better estimation of model performance.

Fig. 6. Loss calculation

IV. TRAINING AND EVALUATION

For neural translation, we employed an encoder-decoder

transformer at the core of our Integrator model. We utilized

the build_transformer () function to instantiate a transformer,

and its details are elaborated here. Initially, both the source

and target embeddings undergo positional encoding to

integrate order information into the embeddings. The encoder

comprises a multi-head self-attention block, which facilitates

the transformation of the embeddings to incorporate the

relationship of each token with every other token in the input

sequence. Subsequently, after the attention layer, a fully

connected feedforward layer is added that aids in the learning

process. On the other hand, the decoder consists of a

multi-head self-attention block, followed by a cross-attention

block connecting it to the encoder, and finally a feedforward

block. The decoder output is then passed into the projection

layer, which yields the final output. The configuration of the

model is described in Table 1 providing a comprehensive

overview of its architecture.

Table I: Transformer network configuration

 𝑵 𝒅𝒎𝒐𝒅𝒆𝒍 𝒅𝒇𝒇 𝒉 𝒅𝒌 𝒅𝒗 𝑷𝒅𝒓𝒐𝒑

 3 256 2048 4 64 64 0.1

where,

𝑵 : No. of encoder-decoder blocks

𝒅𝒎𝒐𝒅𝒆𝒍 : Embedding size

𝒅𝒇𝒇 : Feed forward layer upward projection size

𝒉 : No of attention heads

𝒅𝒌 : Query and Key vector dimension

𝒅𝒗 : Value vector dimension

𝑷𝒅𝒓𝒐𝒑 : Dropout probability

The dataset comprises 20,000 equation-integral pairs,

which are divided into training and validation data in a 9:1

ratio. During training, the data is loaded in batch sizes of 32,

while for validation, a batch size of 1 is utilized. The source

and target sequence lengths (seq_len) for the equations are set

to 80. For weight updates, we employ the Adam optimizer

with a learning rate of 1e-4. The model is trained for 50

epochs, and after each epoch, we execute the validation

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 6 June 2024

216

function to assess the progress. During validation, an

equation is passed through the model, and once its integral is

obtained in embedding form as output, we further decode it

into symbolic form using either greedy decode or beam

search technique. Fig. 7 illustrates the distinction between

these two decoding methods. This model was implemented

using the PyTorch framework, and training was conducted on

a T4 GPU in Google Colab.

Fig. 7. Greedy and beam search decoding techniques

In neural translation tasks, metrics like BLEU score are

commonly used. However, due to the unique nature of our

problem and dataset, BLEU scores were not particularly

helpful. Therefore, in this paper, we rely on basic token

comparison to verify the correctness of our solution. It's

important to note that there can be multiple ways to represent

an equation, resulting in multiple valid outputs for the same

input. To address this issue, we simplify the output integrals

before comparing them to the actual integrals using SymPy

[6]. After simplification, the accuracy of the model is

calculated by comparing the tokens of the output integral

with those of the actual integral. This token comparison

provides a straightforward and effective means of evaluating

the model's performance in our context.

V. RESULTS

The outcomes of this research, along with a comparison to

existing mathematical software, are presented in Table 2. The

training dataset comprised 18,000 equation-integral pairs,

while the remaining 2,000 were allocated for validation. To

provide a comparative analysis, the performance of

mathematical software such as Mathematica, Matlab, and

Maple in symbolic integration was referenced from [3].

Initially, the base integrator model succeeded in integrating

around half (52%) of the input equations accurately.

However, after incorporating digit encoding and our custom

loss function into the base model, a notable improvement in

the accuracy was observed. Furthermore, employing beam

search (with a beam size of 3) instead of greedy search (with

a beam size of 1) resulted in an additional optimization,

enhancing the model's performance by 3%. Overall, we could

achieve promising performance, comparable to that of

existing mathematical software using neural machine

translation.

Tabel II: Training and validation results

 Train

Accuracy

Valid.

Accuracy

Mathematica

l

Software

Mathematica - 84 %

Matlab - 65 %

Maple - 67 %

Base Integrator Model 53 % 52 %

Integrator

with digit

encoding

Greedy Search 70 % 64 %

Beam Search

(beam size = 3)

72 % 67 %

VI. CONCLUSION

In this study, we investigated the effectiveness of neural

networks in mathematical reasoning, specifically focusing on

the task of symbolic integration. We showcased the potential

of neural translation models, particularly encoder-decoder

transformers in this domain. Through techniques like digit

encoding and custom loss functions, we achieved accuracy

levels comparable to traditional mathematical software.

While our study examined a limited subset of mathematical

problems, it serves as a foundation for addressing the broader

challenge of mathematical reasoning in AI models.

Continued efforts in this direction hold promise for the

development of robust and mathematically aware models

capable of reasoning through problems with human-like

proficiency.

REFERENCES

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017b). Attention

is All you Need. arXiv (Cornell University), 30, 5998–6008.

https://arxiv.org/pdf/1706.03762v5

[2] Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019, April

2). Analysing mathematical reasoning abilities of neural

models. arXiv.org. https://arxiv.org/abs/1904.01557

[3] Lample, G., & Charton, F. (2019, December 2). Deep learning

for symbolic mathematics. arXiv.org. https://arxiv.org/abs/

1912.01412

[4] Charton, F. (2021, December 3). Linear algebra with

transformers. arXiv.org. https://arxiv.org/abs/2112.01898

[5] Testolin, A. (2024). Can neural networks do arithmetic? A

survey on the elementary numerical skills of State-of-the-Art

Deep Learning models. Applied Sciences, 14(2), 744.

https://doi.org/10.3390/app14020744

[6] SymPy. (n.d.). https://www.sympy.org/en/index.html

[7] D’Ascoli, S., Kamienny, P., Lample, G., & Charton, F. (2022,

January 12). Deep symbolic regression for recurrent

sequences. arXiv.org. https://arxiv.org/abs/2201.04600

[8] Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,

Michalewski, H., Ramasesh, V., Slone, A., Anil, C., Schlag, I.,

Gutman-Solo, T., Wu, Y., Neyshabur, B., Gur-Ari, G., &

Misra, V. (2022, June 29). Solving Quantitative Reasoning

Problems with Language Models. arXiv.org. https://arxiv.org/

abs/2206.14858

[9] Lu, P., Qiu, L., Yu, W., Welleck, S., & Chang, K. (2022,

December 20). A survey of deep learning for mathematical

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 6 June 2024

217

reasoning. arXiv.org. https://arxiv.org/abs/2212.10535

[10] Wang, Y., Liu, X., & Shi, S. (2017). Deep Neural Solver for

Math Word Problems. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing (pp.

845–854). Copenhagen, Denmark: Association for

Computational Linguistics.

[11] Zhang, D. (2022). Deep learning in automatic Math Word

Problem solvers. In Springer eBooks (pp. 233–246).

https://doi.org/10.1007/978-3-031-09687-7_14

[12] Thawani, A., Pujara, J., Ilievski, F., & Szekely, P. (2021).

Representing Numbers in NLP: A Survey and a Vision. In

Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies (pp. 644–656). Online:

Association for Computational Linguistics

