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Abstract— With the role of AI becoming more and more decisive in technological progress and human civilization's trajectory, we 

must look into this very critical limitation of Neural Networks – their inability to reason and comprehend mathematics. In this research, 

we investigate the mathematical capabilities of neural networks, focusing on symbolic integration—a pivotal mathematical task with 

diverse practical applications. We approach integration as neural translation task, using transformers. A novel digit encoding method 

has also been introduced, which significantly improves the performance of our basic integrator model. The study includes discussions on 

dataset generation, preprocessing procedures for handling symbolic mathematics data, detailed model architecture, and a comparative 

analysis of achieved results with mathematical software solutions. 

 

I. INTRODUCTION 

AI can be seen as the driving force behind the 

ever-changing technologies and evolution of human 

civilization. Neural networks are constantly improving at 

tasks like recognizing faces and predicting trends. Large 

Language Models (LLMs), such as ChatGPT, are great at 

generating and understanding natural language. However, 

despite their skill in crafting sonnets, identifying faces, and 

creating art, these advanced models face challenges with 

basic arithmetic, like multiplication. This limitation of neural 

networks becomes evident as we move into the age of AI. 

Addressing this shortfall is crucial if we aim to achieve 

Artificial General Intelligence (AGI). To enable these 

systems to think like humans and handle a variety of tasks, 

including mathematics, we must find ways to improve their 

abilities in this area. 

Several studies have explored how well neural networks 

can handle mathematics. Google's Minerva project [8] 

trained an LLM to solve basic high-school math problems. 

David et al. in [2] created a dataset of math problems and 

evaluated the performance of LSTM and Transformer models 

in solving them. The Deep Neural Solver [8] by tencent was 

an RNN-based model to automatically solve math word 

problems by translating them into mathematical equations. 

Francois Charton conducted extensive research on neural 

networks' ability in tackling calculus [3], linear algebra [4], 

and recurrent sequences [7]. 

In this paper, we explore into how effectively neural 

networks can perform symbolic integration—a fundamental 

mathematical task with many practical applications. 

Symbolic integration presents itself as an ideal domain for 

investigating the mathematical capabilities of neural 

networks. We propose treating symbolic integration as a 

natural language translation task, wherein a model learns to 

translate input functions into their respective anti-derivatives. 

Our approach begins with an explanation of how we 

generated a dataset for this task, outlining input and output 

sequences. We then provide a detailed description of the 

model architecture used. Finally, we evaluate the model's 

performance and compare it with existing mathematical 

software to weigh its effectiveness. Through this exploration, 

we aim to illuminate the potential of neural networks in 

handling complex mathematical tasks and pave the way for 

further advancements in AI-driven mathematical 

problem-solving. 

II. DATASET GENERATION 

To prepare a seq-to-seq model for an integration task, we 

need to convert mathematical functions into a format that an 

NLP model can understand. The input sequences to the 

model consist of symbolic functions, while the output 

sequences contain their corresponding antiderivatives. 

Creating a dataset of function-integral pairs by manually 

integrating each function would be time-consuming. 

Therefore, we use the inverse method of differentiation to 

generate these pairs. As described in [3], we convert these 

symbolic expressions into prefix form, simplifying parsing 

and ensuring uniform expression representation. 

For representing the symbolic expressions, we employ 

functional trees, where each node represents an operator or an 

operand, as shown in fig. 1. To generate an expression, we 

start from the topmost node of the tree and iteratively select 

operators/operands for nodes until the tree reaches its 

maximum depth or all branches terminate with an operand.  

 
Fig. 1. Functional Tree for f(x) = x + sin(3x) 
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The algorithm used to generate symbolic expressions is 

described here: 

Algorithm 1 Algorithm for function generation 

Input: Maximum number of internal nodes 

(max_nodes) 

Output: A random function tree 

 

    Initialize a function tree 

    Generate a node recursively: 

        Decrement max_nodes by 1 

        if (max_nodes <= 0) then 

            Create a leaf node with a random operand 

            return node 

        Choose a random operator for the node 

        if (operator is binary) then 

            Generate two child nodes recursively 

            return node 

        else 

            Generate a child node recursively 

            return node 

    Set the returned node as root node 

    end         

where, 

 Operators can be any unary or binary mathematical 

operator like +, -, *, /, ^, sine, cosine, tangent, etc. For 

this paper, considering the computing constraints, the 

operators are chosen from the set – 

{+, -, *, ^} 

 Operands can be any variable x, y, z, etc. or any real 

number. For this paper, we consider only univariate 

functions in x and constants (coefficients or operands) 

are in the range [-3000,3000] 

The functions generated using this algorithm are then 

converted into prefix notation using Sympy [6] and stored as 

function-integral pairs. For this study, we collected a dataset 

of 20,000 function-integral pairs, which are saved in text files 

labeled p_expr.txt and p_intg.txt respectively. The prefix 'p' 

indicates that the equations are in polish notation. This 

method simplifies expression format and ensures consistency 

in representation. 

III. MODEL ARCHITECTURE 

We selected the task of mathematical reasoning - 

Integration of univariate functions, to assess the capability of 

neural networks. We tackle this challenge as a neural 

translation task, wherein a sequence-to-sequence model 

learns to translate input functions into their corresponding 

integrals. Fig. 2 provides a simple illustration of this process. 

The sequence-to-sequence model utilized in this study is 

based on the Transformer architecture, as described in [1]. 

Before feeding the equations into the transformer for neural 

translation, preprocessing is necessary. Initially, the 

equations are segmented into individual tokens, and special 

tokens like [SOS], [EOS], [UNK] are added to them. 

Additionally, each tokenized equation is standardized to a 

fixed size (seq_len) by adding [PAD] tokens. This results in 

source and target equations in tokenized form. Subsequently, 

these equations are encoded from text to numeric 

representation using a vocabulary derived from the tokens. 

Each token is encoded into a vector with dimensions (1, 

vocab_size), thereby transforming each equation into the 

format (seq_len, vocab_size). 

 
Fig. 2. Symbolic integration using a seq. to seq. model. 

Then, we proceed to generate input embeddings from these 

equations. This process involves converting each token into a 

multi-dimensional vector with d_model dimensions. These 

transformed inputs are now prepared to be fed into the 

transformer model to generate integrals for the input 

equations. As the equations traverse through the layers of the 

transformer, they are translated into their corresponding 

integrals. However, they remain in the vector format (seq_len, 

d_model). To obtain the final output integrals, a projection 

layer is used to convert the d_model dimensional vectors into 

the corresponding tokens. These output integrals are 

subsequently compared token by token with the actual 

integrals (referred as labels), and loss is computed using a 

loss function. This loss is then backpropagated through the 

layers of the transformer, and finally weights and biases get 

updated according to that.  

 
Fig. 3. A basic attention based integrator 

This formed the foundational architecture for translating 

equations into their respective integrals. While this model 

effectively handled basic functions, we needed to enhance its 

capabilities to integrate more complex functions with greater 

precision. Therefore, we implemented several modifications 

to fine tune the model according to our needs. One significant 

limitation of the initial version was its treatment of numbers 

in a manner identical to mathematical symbols. Consequently, 

a significant portion of the vocabulary was dedicated to 

numbers, with each possible number considered as a separate 
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token. To address this issue and retain the numeric essence of 

coefficients and constants in equations, we devised a solution. 

We encoded digits as special digit tokens and incorporated 

the values of these tokens into the input embeddings through 

concatenation. This refinement enables us to accurately 

process the numeric information conveyed by the coefficients 

and constants, a consideration overlooked in the previous 

model. 

 
Fig. 4. Digit encoding of input expressions 

However, this alternative encoding scheme poses a 

challenge when it comes to decoding it back into equation 

form. The output from the transformer is in the format 

(seq_len, d_model). Therefore, we must decode it into tokens 

and decode digit tokens into valid numeric values. To address 

this, we implemented two parallel decoding mechanisms 

within the projection layer. In the first part, a dense linear 

layer projects the transformer output (seq_len, d_model) into 

tokens (seq_len,). Simultaneously, in the second part, a 

sequential regression layer is employed to project the values 

of digit tokens. This is achieved through a series of dense 

layers, allowing us to accurately decode digit tokens into 

their corresponding numeric values.  

 
Fig. 5. Projection layer to decode transformer output 

The next challenge was to compute the loss based on this 

output. To tackle this, we devised a custom loss function 

designed to handle token class mismatches and slight shifts in 

the numeric values of coefficients differently. In our earlier 

setup, where all numbers were treated as distinct tokens, even 

a minor error in the numeric value of a predicted coefficient 

was treated same as predicting a different variable or operator. 

In this new function, we employed cross-entropy loss to 

quantify the error in token prediction and mean square error 

to quantify the error in the value of digit tokens. The total loss 

is computed as the weighted sum of these two errors, 

ensuring a better estimation of model performance. 

 
Fig. 6. Loss calculation 

IV. TRAINING AND EVALUATION 

For neural translation, we employed an encoder-decoder 

transformer at the core of our Integrator model. We utilized 

the build_transformer () function to instantiate a transformer, 

and its details are elaborated here. Initially, both the source 

and target embeddings undergo positional encoding to 

integrate order information into the embeddings. The encoder 

comprises a multi-head self-attention block, which facilitates 

the transformation of the embeddings to incorporate the 

relationship of each token with every other token in the input 

sequence. Subsequently, after the attention layer, a fully 

connected feedforward layer is added that aids in the learning 

process. On the other hand, the decoder consists of a 

multi-head self-attention block, followed by a cross-attention 

block connecting it to the encoder, and finally a feedforward 

block. The decoder output is then passed into the projection 

layer, which yields the final output. The configuration of the 

model is described in Table 1 providing a comprehensive 

overview of its architecture. 

Table I: Transformer network configuration 

   𝑵         𝒅𝒎𝒐𝒅𝒆𝒍          𝒅𝒇𝒇         𝒉         𝒅𝒌         𝒅𝒗         𝑷𝒅𝒓𝒐𝒑 

   3           256          2048       4        64        64           0.1            

where, 

𝑵 :          No. of encoder-decoder blocks 

𝒅𝒎𝒐𝒅𝒆𝒍 :     Embedding size 

𝒅𝒇𝒇 :          Feed forward layer upward projection size 

𝒉 :          No of attention heads 

𝒅𝒌 :          Query and Key vector dimension 

𝒅𝒗 :          Value vector dimension 

𝑷𝒅𝒓𝒐𝒑 :       Dropout probability 

The dataset comprises 20,000 equation-integral pairs, 

which are divided into training and validation data in a 9:1 

ratio. During training, the data is loaded in batch sizes of 32, 

while for validation, a batch size of 1 is utilized. The source 

and target sequence lengths (seq_len) for the equations are set 

to 80. For weight updates, we employ the Adam optimizer 

with a learning rate of 1e-4. The model is trained for 50 

epochs, and after each epoch, we execute the validation 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Volume 11 Issue 6 June 2024 

 

216 

function to assess the progress. During validation, an 

equation is passed through the model, and once its integral is 

obtained in embedding form as output, we further decode it 

into symbolic form using either greedy decode or beam 

search technique. Fig. 7 illustrates the distinction between 

these two decoding methods. This model was implemented 

using the PyTorch framework, and training was conducted on 

a T4 GPU in Google Colab.  

 
Fig. 7. Greedy and beam search decoding techniques 

In neural translation tasks, metrics like BLEU score are 

commonly used. However, due to the unique nature of our 

problem and dataset, BLEU scores were not particularly 

helpful. Therefore, in this paper, we rely on basic token 

comparison to verify the correctness of our solution. It's 

important to note that there can be multiple ways to represent 

an equation, resulting in multiple valid outputs for the same 

input. To address this issue, we simplify the output integrals 

before comparing them to the actual integrals using SymPy 

[6]. After simplification, the accuracy of the model is 

calculated by comparing the tokens of the output integral 

with those of the actual integral. This token comparison 

provides a straightforward and effective means of evaluating 

the model's performance in our context. 

V. RESULTS 

The outcomes of this research, along with a comparison to 

existing mathematical software, are presented in Table 2. The 

training dataset comprised 18,000 equation-integral pairs, 

while the remaining 2,000 were allocated for validation. To 

provide a comparative analysis, the performance of 

mathematical software such as Mathematica, Matlab, and 

Maple in symbolic integration was referenced from [3]. 

Initially, the base integrator model succeeded in integrating 

around half (52%) of the input equations accurately. 

However, after incorporating digit encoding and our custom 

loss function into the base model, a notable improvement in 

the accuracy was observed. Furthermore, employing beam 

search (with a beam size of 3) instead of greedy search (with 

a beam size of 1) resulted in an additional optimization, 

enhancing the model's performance by 3%. Overall, we could 

achieve promising performance, comparable to that of 

existing mathematical software using neural machine 

translation. 

 

 

Tabel II: Training and validation results 

 Train 

Accuracy 

Valid. 

Accuracy 

Mathematica

l 

Software 

Mathematica - 84 % 

Matlab - 65 % 

Maple - 67 % 

Base Integrator Model 53 % 52 % 

Integrator 

with digit 

encoding 

Greedy Search 70 % 64 % 

Beam Search 

(beam size = 3) 

72 % 67 % 

VI. CONCLUSION 

In this study, we investigated the effectiveness of neural 

networks in mathematical reasoning, specifically focusing on 

the task of symbolic integration. We showcased the potential 

of neural translation models, particularly encoder-decoder 

transformers in this domain. Through techniques like digit 

encoding and custom loss functions, we achieved accuracy 

levels comparable to traditional mathematical software. 

While our study examined a limited subset of mathematical 

problems, it serves as a foundation for addressing the broader 

challenge of mathematical reasoning in AI models. 

Continued efforts in this direction hold promise for the 

development of robust and mathematically aware models 

capable of reasoning through problems with human-like 

proficiency. 
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